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ABSTRACT 

We examine the problem of passive localization of a mov- 
ing target in a littoral environment, based on its depth and 
range-rate. We compare performance with the conven- 
tional matched field processor, which localizes in depth 
and range. Range-rate localization is more robust with re- 
spect to uncertainties in the environment, and with respect 
to associated uncertainties in the horizontal wave num- 
bers of the channel modes used for the matched field tar- 
get response. In our approach the complex amplitudes of 
the modes are treated as nuisance parameters, which com- 
prise a hidden, first-order Markov state process. In lieu of 
an analytic expression for the evolution of the likelihood 
function as new snapshots are integrated, we evaluate a 
method of particle filtering, or sequential resampling. 

1. INTRODUCTION 

Matched field processing (MFP) techniques localize targets 
in shallow water environments by computing a replica vec- 
tor based on channel modes associated with a given set of 
environmental parameters, including the sound-speed pro- 
file [3]. The\ typically suffer from high sidelobes and am- 
biguous peaks produced at ambiguous ranges and depths, 
a problem thai is exacerbated by environmental uncertain- 
ties. Modifications to the MVDR beamformer have been 
proposed to make it more robust to these uncertainties, by 
constraining the weight vector to stablilize its response over 
an ensemble of environments [1]. An additional problem 
is target motion, which spreads the target peak, decreasing 
its visibility. Previous work on target motion has focused 
on applying a transformations to successive data snapshots 
that compensate for motion corresponding to a particular 
hypothesized velocity, resulting in a focused peak in the 
range-depth ambiguity surface for a target having that ve- 
locity [2] .  The main idea of this paper is to view target 

motion as an asset rather than a liability, and to jointly es- 
timate depth and range-rate in a manner that not only com- 
pensates for target motion, but also enhances robustness to 
environmental uncertainty. We propose to implement this 
by constructing a state model for the replica vector, using an 
assumed target velocity to constrain the state evolution, and 
leaving the initial state, which depends on target range, as a 
nuisance parameter. Because we do not have a closed-form, 
analytic solution for the updating of the likelihood function 
that arises from this state model, we instead examine a non- 
parametric method of approximating the likelihood, a se- 
quential resampling or "particle filtering" method [4, 5]. 

2. MATCHED FIELD PROCESSING 

Matched field processing obtains a replica vector for a target 
in shallow water based on the Green's function for the target 
response. For a shallow water environment, the response at 
the nih sensor can be expanded in terms of the eigenmodes 
of the channel as follows [6, 7]: 

M 

Sk :») = E 
2w 

kT(m)r 
ipm(cn)ipm(d)exp(-j kT(m) -r). 

(1) 

Here k, m, and n index the time of the snapshot, the mode 
number, and the array sensor number, respectively. The sum 
is over the M eigenmodes 3/>m(z) supported by the chan- 
nel, where z is the depth coordinate. The eigenmodes are 
sampled at c„, the depth of the nth sensor, and at d, the 
depth of the target. The amplitude of the mth mode includes 
a phase factor proportional to the product of its horizontal 
wave number kr(m) and the target range r. Rewriting this 
expression in terms of the JV-dimensional replica vector Sj., 
where N is the number of hydrophone sensors, we have: 

sk(d,r)=*(c)[£(d,r)®xk(r)], (2) 
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where 0 denotes the Hadamard, or element-by-element, vec- 
tor product. Here the nth element of s* is s* (n), the (n, m) 
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element of * is «/>m(cn), and the mth element of <£(d,r) 

is Jkjll\T'4>m(d). The modal phases have been collected 

into a vector Xj. (r), whose mih element is given by 
exp(-j kr(m)) ■ r). 

If the target is presumed to be stationary, so that the 
replica vector is constant across a window of K snapshots, 
sk = s, then summing over the matched-filter output of K 
snapshots yields the conventional matched field processor, 
or Bartlett estimate [8]: 

££ IUV »*' 
fits (3) 

where Rys/ = j^ J2k Mk2*' *s tne sample correlation matrix 
of the data. 

This estimator is also justified by the likelihood of the 
data, as a function of depth d and range r, over the window 
of snapshots, if the data has the random model y_ = aus + 
nk. Here the signal has a Gaussian distributed complex am- 
plitude ak ~ CiV[0,(7j], and there is additive white mea- 
surement noise n^ ~ CN[0, o^I]. Then by using Wood- 
bury identities (a brief derivation is reproduced in in Ap- 
pendix 3.7 of [9]), the likelihood of the kth snapshot can be 
shown to be 

/(Efck(d,r)) 

-exp< - 2*2* + 

(TTCT
2
)" (l + $rsU) 

U%\\2       \ 
»2 (**+£*«)/' 

(4) 

Conditioned on s, all the data vectors y_ are independent 
and share the same likelihood. In the high SNR limit, a2

s » 
o\, their joint log-likelihood, as a function of (d, r), is pro- 
portional to the Bartlett estimate of Equation 3. 

An alternative approach, the M VDR beamformer or Capon 
spectrum, has advantages for suppressing interfering sources 
and sidelobes. However it is more sensitive to target nulling 
if the presumed target replica vector is mismatched with re- 
spect to the true target response. In this work we investi- 
gate robustness with respect to errors in environmental pa- 
rameters, which can produce target mismatch. We evalu- 
ate our Moving Target Depth Estimator (MTDE) and the 
Bartlett estimator, or conventional matched field processor, 
as a baseline estimator for comparison. 

3. TARGET MOTION, ENVIRONMENTAL 
MISMATCH, AND DEPTH AMBIGUITY 

Two phenomenon which degrade the performance of the 
Bartlett estimator are target motion and environmental mis- 
match. Here we examine the scenario in which a target is 

moving in range at a constant velocity and constant depth. 
Target motion tends to smear out the peak target power across 
range, reducing peak height and the effective post-beamformer 
SNR. An example realization of an ambiguity surface is 
shown in Figure 1, where the target has moved from 10 to 
10.5 km over 50 snapshots spaced two seconds apart, as in- 
dicated by the white line segment bounded by stars. Note 
that there are ambiguous peaks at other ranges at the same 
depth as the target (20m), but also at a depth of about 83m. 
(The cause of the ambiguous depth will be discussed below.) 

Environmental mismatch produces mismatch of the replica 
vector s. The replica vector is a function of both range and 
depth, but it is range localization that seems to be more se- 
riously affected by mismatch, as shown in Figure 2. To un- 
derstand this, consider Equation 2. The depth dependence 
is contained in the vector <£, the mode amplitudes sampled 
at the source depth. This vector also has a global scaling 
inversely proportional to range; the average range effec- 
tively scales the signal power a2

s. The primary dependence 
on range is contained the vector of modal phases Xj., each 
phase being proportional to the product of the horizontal 
wavenumber and the range, kr(m) ■ r. A small mismatch 
in the wavenumber kr(m) can cause a big mismatch in the 
phase, as it is multiplied by a range r than can be on the 
order of several kilometers. 

Our initial investigation of environmental mismatch is 
based on the simple Pekeris model, with a uniform sound- 
speed in the water channel, and in the ocean bottom [6, 7]. 
Mismatch is implemented by using the Pekeris model to 
generate synthetic data, then perturbing the vertical wavenum- 
bers kz assumed in processing the data and forming an am- 
biguity surface. The wavenumbers are perturbed by a uni- 
form random variable whose extent we express as a fraction 
of *£, the approximate spacing of the vertical wavenum- 
bers, where h — 100m is the depth of the water column. 
Then the assumed modes ipm(z) and horizontal wavenum- 
bers kT = ^Jhl - kl are computed accordingly. For ex- 
ample, in Figure 2, they are perturbed by ±4.5 \, the total 
range of the perturbations being 0.9 f. Note that while the 
range information has been lost, there is still significant en- 
ergy distributed, across several ranges, at the correct depth 
of 20m and at an ambiguous depth of about 83.5 m 

To see the source of the depth ambiguity, refer to Fig- 
ure 3, in which we plot ^(d) atd = 20m and d = 83.5m, as 
well as the magnitude of 0(d). While the amplitudes of the 
modal phases are different at the two depths, undergoing a 
relative sign change every other mode, the magnitudes are 
approximately equal. The sign change can be compensated 
by a corresponding sign change in the modal phase vector 
xk, which may occur at another range, as seen in both Fig- 
ures 1 and 2. For a "perfect" constant-index waveguide, in 
which the modes are sinusoidal, and the amplitudes go to 
zero at the bottom, the ambiguity is exact. In this special 
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case the modes are sinusoidal, given by sin( xm)- Now let 
us try to identify two depths di and cfe at which the mag- 
nitudes of the modes are equal. Equating the magnitudes 
yields 

•    2/7rdl       N sin (——m) 
h 

•   2/^2      > sin ( —— m) 
h 

2-Kdi ,2Trd2    . 
cos(—-—m)    =   cos(—-—m) (5) 

Using the fact that discrete-time sinusoidal signals of the 
form exp(iwm) are the same for frequencies w that are sep- 
arated by an integer multiple of 27r, we have the following 
solution: 

2irdi      litdi 
2-K d\ = c?2 — h. (6) 

Thus depth values that are symmetric about the the middle 
of the water channel are potentially ambiguous. The am- 
biguous depth shown in Figure 3, ~ 83.5m, is a little bit 
deeper that the depth predicted by Equation 6,80m, since a 
more realistic "soft" boundary condition is used that causes 
the eigenmodes to be non-zero in the sediment bottom, and 
also decreases their vertical wavenumbers, "stretching" them 
slightly. 

4. STATE MODEL FOR TARGET MOTION 

We wish to accommodate target motion, and discard the pre- 
sumption of stationarity of the replica vector used in obtain- 
ing the Bartlett processor (s_k = s). We accommodate mo- 
tion by using a hidden state process, where the state is given 
by the modal phases z k of Equation 2: 

xk = A{r)(ukQxk_1). (7) 

Here the state transition matrix A(f) is a diagonal matrix of 
phase factors, with the mlh element being given by 
exp(— j kr(m)-rAt), wherer is range-rate/horizontal-velocity, 
and At is the time between snapshots. The initial phase vec- 
tor x$ is unknown. So what is assumed known in this model 
is not the initial range of the target, but only the change in 
range, or range-rate. The state-noise vector y^. consists of 
small phase perturbations. Its purpose is primarily to relax 
slightly the constraint imposed on the state sequence by the 
presumed horizontal wavenumber kT{m), which may have 
errors. 

Denote the data matrix having the first k data vectors as 
its columns by Yk. Our goal is then to update the cumla- 
tive likelihood of the data, given a depth and range-rate pair 
/(Yfc |r, d), as we acquire new data vectors j/ . If the state 
vectors and the measurement vectors were both Gaussian, 
with linear transition matrices, then we could apply the ex- 
pressions of Kaiman filtering. The Kaiman filter equations 

provide expressions for a state prediction, measurement pre- 
diction, and state update; these are the conditional means 
of the densities f(xk\Yk^), f(yk\Yk^), and f(xk\Yk). 
The Kaiman equations also yield expressions for the error 
covariances associated with the estimates, which are the co- 
variances of the three densities. The conditional means and 
covariances are then enough to characterize the densities, 
since the densities are Gaussian. So rather than viewing 
the Kaiman filter as merely updating state estimates, we can 
view it as updating these densities, needed in turn to update 
the likelihood. In standard applications of Kaiman filter- 
ing, parameters of interest, such as target range and velocity, 
comprise the state vector, and state estimates will suffice. In 
the application discussed here, the state consists largely of 
nuisance parameters; the parameters of interest must be in- 
ferred from the cumulative likelihood function f(Yk\f, d) 
estimated from approximations to these densities. 

5. SEQUENTIAL RESAMPLING FOR STATE 
ESTIMATION 

In lieu of an analytic expression for the updated likelihood, 
we employ a method of sequential resampling [4, 5]. This 
represents the densities parametrically, by a collection of 
samples, known as "particles." Loosely, we can think of the 
method as evolving histograms of samples, rather than ana- 
lytic density expressions. The process is as follows [4]: at 

time-step k, we have some (prediction) samples x k ' which 
are distributed as /(z^Y^-i). The first step is to scale, 
or weight, these samples according to the likelihood of the 
kth data snapshot. The weights are proportional to this like- 
lihood, and normalized to sum to one: 

„(') - f(yttel(i)) 

Ef/G/Jsn «h 
(8) 

For our application, the likelihood was obtained by substi- 
tuting Equation 2 into Equation 4. In the second step, the 
samples are resampled with a probability given by the like- 
lihood, to yield a new set of (update) samples tfk, which are 
distributed as f(xf.\Yk): 

Prob y? = x_l{i)] = ■■ ,W (9) 

After this step, one typically has a significant number of 
samples xj. that are identical/degenerate, since they corre- 

spond to prediction samples x k ' that have high weight val- 
ues. In the third step, the samples are translated according 
to the state transition equation, and state noise is added . 
This produces new prediction samples: 

2lS=a(si0,ai0) (10) 
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(the state noise u£' has the side effect of differentiating de- 
generate samples). One approach is to run separate estima- 
tors, or "particle filters," in parallel, one for every hypoth- 
esized range-rate and depth (r, d). Then the likelihood for 
each (r, d) pair can be approximated as follows: 

f(y k\Yk-i; r,d)    =        dxkf(yk\xk;r,d)f(xk\Yk-x;r,d) 

(11) 

Assuming a uniform prior on d, then normalizing this with 
respect to d provides an estimate of f(d\Yk). We can then 
compute an ambiguity surface as 

f(f,d\Yk) = f(f\Yk,d)-f(d\Yk). (14) 

N 

- £/tej£;(i);M). 

And the cumulative likelihood is given by 

N 

f(Yk\f,d) = Y[f(yk\Yk-i;r,d). (12) 
t=o 

In practice, running parallel particle filters is likely to be 
computationally prohibitive. For example, 100 grid points 
in both depth and range would require 10,000 parallel es- 
timators, each requiring a set of samples to represent the 
likelihood. 

An alternative approach is to include the parameters of 
interest, in this case (r,d), in the state vector, with a uni- 
form prior. Then an ambiguity surface may be obtained by 
plotting the marginal histogram of the update samples Xj/, 
which are distributed as /(x^ \Yk). The marginal histogram 
gives an approximation to /(r, d\Yk), which with a uniform 
prior on (r, d) is proportional to the likelihood f(Yk\r, d). 
A difficulty of this approach in practice is that the sequential 
resampling techniques tend to display the behavior of com- 
petitive dynamical systems (see, for example, [10]). That is, 
even if two sample regions have an equal level fitness with 
respect to the likelihood, over time one of them will tend to 
"win", and monopolize the samples. In our investigation we 
observed that with a target at 20m, some trials would show 
a peak at 20m, while other trials would show a peak at the 
depth ambiguity of 83.5m. So the ambiguity surface of a 
single trial does not reflect the intrinsic ambiguity over the 
ensemble of trials; it gives an over-optimistic picture of the 
ambiguity surface, and misleading in this respect. 

To alleviate this problem, we chose a hybrid approach, 
putting velocity in the the state vector, but leaving depth, 
which we treat as the parameter of primary interest, out 
of the state vector. This requires a separate particle filter 
for each hypothesized depth. We chose 100 grid points in 
depth, leading to 100 corresponding particle filters. The his- 
togram of particles at each depth provides an estimate of 
f(f\Yk,d). At each depth, we can use the equivalent of 
Equation 12 in order to obtain the likelihood: 

Again, with a uniform prior on (r, d), this posterior density 
is proportional to the likelihood f(Yk\f,d). 

To combat the problem of degeneracy of samples we 
implemented an approach suggested in [4]. Namely, in the 
state prediction step, additional state noise was added to dif- 
ferentiate degenerate samples. Since range-rate r was in- 
cluded in the state, noise was added to the range-rate values, 
with a standard deviation of 0.2 m/s. In addition, the 5% of 
the samples with the largest weights were automatically re- 
tained for the next step, to mitigate against losing a sample 
value on the basis of a single snaphot only. 

6. SIMULATION AND RESULTS 

Figures 4 and 5 show two ambiguity surfaces obtained in 
this manner, for a surface and submerged target, respec- 
tively. The SNR per sensor element was set at 0 dB. At 
each hypothesized depth we ran a particle filter with 500 
samples or "particles". Depth estimates were obtained by 
taking the maximum of f(Yk\d). Histograms of depth es- 
timates for a surface target, obtained from 100 trials of the 
Bartlett estimator and the MTDE estimator, are shown in 
Figure 6. Similar histograms are shown for a submerged 
target at a depth of 20m in Figure 7. Note the ambiguity 
at a depth of about 83.5m. Because we run parallel particle 
filters for all hypothesized depths, the ambiguity surface for 
a single trial of the MTDE estimator, as in Figure 5, diplays 
this ambiguity. 

To investigate the robustness of the estimators with re- 
spect to environmental uncertainty, the probability of cor- 
rect localization (PCL) of the target is plotted versus in- 
creasing environmental uncertainty in Figure 8. The region 
of correct localization includes ±2m around the true tar- 
get depth, and around the depth ambiguity. As discussed in 
Section 3, the vertical wavenumbers in the estimator were 
perturbed by a uniform random variable whose range is ex- 
pressed as a fraction of f. The PCL is plotted as this frac- 
tion is increased from 0 to 1.5. This environmental per- 
turbation does not significantly degrade the localization of 
the surface target, but it does degrade the localization of the 
submerged target. The degradation is not as severe for the 
MTDE estimator as it is for the Bartlett estimator. 

N 

f(Yk\d) = Y[f(yk\Yk„i;d). (13) 
k=0 

94 



7. CONCLUSIONS 

In this paper we have investigated an approach of joint esti- 
mation of range-rate and depth, rather than range and depth. 
Range-rate provides another dimension with which to dis- 
criminate targets against interfering sources (such as mov- 
ing ships). In addition, discrimination based on range-rate 
is more robust with respect to environmental uncertainties, 
as verified by simulations. In lieu of an analytic expression 
of the updated likelihood, we have investigated a technique 
of sequential resampling or particle filtering. The limitation 
of this particular technique seems to be its ability to com- 
pensate for low SNR by integrating over many snapshots. It 
should be emphasized, however, that this is a limitation of 
the particle-filter implementation investigated here, and not 
a limitation of the basic state-model approach of localizing 
with respect to range-rate and depth, rather than range and 
depth. Our future work will be focused on implementations 
that more effectively exploit the entire data history. 
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Modes sampled at source depth and ambiguous depth 
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Figure 3: Modes at two ambiguous depths: (a) their ampli- 
tudes, and (b) their magnitudes. 
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Figure 4: MTDE estimator: depth/range-rate ambiguity sur- 
face for a surface target. 
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Figure 5: MTDE estimator: depth/range-rate ambiguity sur- 
face for a submerged target. 
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Figure 6: Histograms of depth estimates for a surface target. 
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Figure 7: Histograms of depth estimates for a submerged 
target. 
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Figure 8: Probability of correct localization for Bartlett and 
MTDE estimators, on both surface and submerged targets. 
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